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Algorithms and the results of analyzing the equation of an automatic control 
system with a phase transition in the thermal feedback element are presented. 

The problem of self-oscillations in automatic control systems with thermal feedback 
was first studied during the development of the theory for a new method of measuring thermo- 
physical characteristics. It was shown in [i] that for a certain feedback level self-oscil- 
lations are excited in this kind of system, and a temperature wave propagates in the same 
feedback element with angular frequency m(k). As follows from [i], for a system with pro- 
portional control, the wave number is constant and the temperature conductivity can be found 
from the dispersion relation 

a - -  ~ / 2 ~  (1)  

from a single experimentally determined quantity, namely, the self-oscillation frequency. 
The question of the regime of excitation of self-oscillations and the correction to the fre- 
quency of a nonlinear systems was examined in detail in [2], where one of the small parameter 
methods [3, 4] was used to analyze the equation of a nonlinear automatic control system. 

Although numerous problems arose as mathematical models of systems that realize the 
self-oscillation method, the range of their applicability is significantly broader. Equations 
similar to those examined in [i, 2] describe heat control systems, in which the source of 
heat and the heat-sensitive element are spatially separated. The feedback in these systems 
is accomplished through a perturbation of the temperature field of the medium, in which the 
heat source and the temperature sensor are situated. If phase transformations are possible 
in the medium, then the change in thermophysical characteristics induced by them, and conse- 
quently, the level of feedback will lead to a change in the operating regime of the automatic 
control system. Under certain conditions, this can cause the system to lose stability or 
become less sensitive. To study the behavior of such systems, we require the method for 
analyzing automatic control systems with thermal feedback developed in [I, 2] extended to 
systems in which the feedback element is found in a biphase state. Below, an algorithm for 
this type of analysis is discussed for an example of an automatic control system with propor- 
tional control and uniform heat flow in the feedback element. 

We shall examine an automatic control system (Fig. i) consisting of a regulator i, planar 
heater 2, differential thermocouple 3, and voltage reference 4. Let the heater and one of 
the thermocouple junctions be situated in the thermally conducting medium 5, immersing the 
feedback pickup loop, while the thermostat 6 serves to discharge the liberated heat. The 
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Fig. i. Automatic control system with a pro- 
portional regulator and thermal feedback cle- 

f ment in biphase state: x B is the phase boun- 
dary; a,, X I, a2, X2 are the thermal diffusiv- 
ity and thermal conductivity in phases I and 
II. 
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temperature field of the medium can be conveniently described in terms of the deviations 
from the thermostat temperature, applied to its second thermocouple junction. 

We shall derive the equation for the automatic control system, having eliminated the 
equations forming the system's elements: 

Ul. = ~ T  ( x 0 ,  t )  --the~ocouples 

U 2 = ~ (U0 - - / 2 1 )  (Y (H 0 - -  121) - -  controller 

P = U ~ / R  -- heater 

%J2 (~, t) : P / S  - -  sample 

(2)  

and the intermediate variables uz, ui, and P: 

~2T2 (6, t ) -  /~%r ]2o" [u--~ ~ SR [ ~-~--  T1(xo, L ~ - -  Tt  (xo, t) ] . (3) 

In order to close the system of equations (2), we shall add to Eq. (3) the equation for the 
thermal conductivity for each phase 

Tl(x ,  t) = alT~ (x, t); Ti (x  , t) = aiT: (x, t) (4)  

w i t h  t h e  c o r r e s p o n d i n g  boundary  c o n d i t i o n s  

TI(0, t) = O; ~T~ (x~, t) = ~ T ;  (x~, t) + pqx,. (5)  

The l a s t  o f  t h e s e  e q u a t i o n s  i s  c a l l e d  t h e  S tephan  c o n d i t i o n  and,  as does  Eq. ( 3 ) ,  e x p r e s s e s  
conservation of energy. In final form, the equation for the automatic control system is the 
nonlinear thermal conductivity boundary value problem 

T x(0, t ) = 0 ;  T~(XB, t ) = T  2(x m t) = T  O , 

2~T2 (x B, t) = ~ T; (XB, t) + Oqx B, 

T; (6, t)---- • --Tx(x0, t) --T~(x0, t) for x s> xo, 

2 0. _ _  T;(6, t ) = •  --T.,(Xo, t) ! -~  T=(xo, t) for xs<Xo, 

( 6 )  

better known as the biphase single-front Stephan problem [5]. It seems reasonable that the 
phase state of the medium varies only under the influence of the external source, while the 
thermal conductivity coefficients ~i, %2 and the thermal diffusivities a I and a2 are assumed 
constant and equal in each of the phases. 

To study the solution of system (6), we chose as the small parameter r = (K -- KC)/KC, 
which is the relative deviation of the coefficient K = K2~2/%2SR from its critical value 
<c at which self-oscillations arise in the system. We shall expand the parameter ~ in powers 
of the auxiliary parameter g, which represents the amplitude of the first harmonic: 

8 = b2~ ~ + b~ ~ - F . . .  ( 7 ) 

We shall also define 

t = (1 + c) "c; c = c2~ 2 + c~o ~ + ..., 

T1 (x, "0 = 7'1 + ~01 (x, "0 + ~20~ (x, "0 + .... 

T 2(x, x) = T2 + ~Ex(x,  z) + ~iE 2(x, x) + .... 

x B (~) = %  + xB (~) = x-~ + ~xl (~) + ~ix~ (~) + ... 

( 8 )  
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Substituting Eqs. (7) and (8) into Eqs. (6) and grouping terms of the same power of ~, we 
obtain a recurrence sequence of linear inhomogeneous boundary value problems. Expressions 
of the form 

T(~) ( x B +  ~%(T)), j = 1, 2; n = O, t, ( 9 )  ] 

included in the matching condition and the Stephan condition, must be expanded in a Taylor 
power series XB(T) = $xl(~) + ~2x2(~) + ... and it is necessary to group terms taking this 
expansion into account. 

In view of the complexity of the problem, we shall confine ourselves to linear analysis, 
examining the first two problems of the sequence: 

T~ (x) = 0; T2 (x) = 0, 

"T~ (0) = O; T~ (x~) = T 2 (xa) = To, 

[o :  " I 

0~(x,  ~) a~e[ (x, "0; "~ " = ~ ( x ,  ~ ) =  a~s'i (z, ,) ,  

( l l )  

~; (8, T) = A~__ O~ (Xo, ~), x~ > Xo, 
Xo 

E~(& ~ ) =  -~ (Xo, ~), x-~ < Xo, 
Xo 

rae  A~j = 2• [Uo/~Z - -7~ i  (Xo)]. 

The dimensionless parameter A is the product of the coefficients of the transformation of 
the constant signal of all elements of a closed automatic control system, and shall be called 
a generalized gain coefficient. The electrical K, u0, ~(T), R(T), thermophysical It(T), 
12(T), and less commonly geometric x 0, 6, S parameters entering into the system in the pro- 
cess of operation can vary with temperature or can be controlled. If the modulus of A ex- 
ceeds some critical value Ac, then self-oscillations arise in the system. The parameter, 
the variation of which leads to the loss of stability, is called the bifurcation parameter. 
The goal of further analysis of Eqs. (lO) and (ll) consists of deriving expressions for the 
temperature field and equations for A c and w. 

The solution of the stationary problem (i0): 

7'~ (x) = Bx; T2 (x) = k-i-~ B (x - -  xB) + To, ( 12 ) 
~2 

B = uo ( D - - I / D - - ~ - -  1); D = 1 + klSR/2tzUoXoK 2 f o r  x a >  xo; 
o~x o 

~ (x) = B ( ~ )  x; ~ (x) ~ & B ~ )  (x - -  x~) + To, 
X2 

B (xB) = go [D(x  B) - -  V-D 2 (x B) - -  l]/(z[~,x (Xo --XB)/g~ + XB]; 

(13) 
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Fig. 2. Stationary temperature of the thermal 

feedback element: l)_Ti(x) + TT; 2) T2(x) + 
T T for Xi/X a > i; 3) T2(x) + T T for Xi/X2 < i. 

D (X~) : 1 + ~,ISR fo r  X B <  Xo Xl 
2(zuoK21~.i (Xo--XB) + X~ j 

p e r m i t s  u s  t o  t r a c k  t h e  v a r i a t i o n  o f  t h e  s t a t i o n a r y  t e m p e r a t u r e  d u r i n g  a p h a s e  t r a n s i t i o n .  
The p h a s e  b o u n d a r y ,  f i r s t  l o c a t e d  a t  t h e  p l a n e  x = 5,  w i t h  i n c r e a s i n g  t h e r m o s t a t  t e m p e r a t u r e  
i s  s h i f t e d  t o  a new c o o r d i n a t e  ( F i g .  2 ) .  I f  n o n e  o f  t h e  p a r a m e t e r s  e n t e r i n g  i n t o  A v a r y ,  
t h e n  t h e  t e m p e r a t u r e  g r a d i e n t  i n  b o t h  p h a s e s  r e m a i n s  c o n s t a n t .  A f t e r  t h i s ,  t h e  p h a s e  b o u n -  
d a r y  intersects x 0, and its further motion is related to the variation of the stationary 
temperature in both phases. 

We seek a periodic solution to Eq. (ii) in the form 

01 (x, "0 = Y (x) exp (icon); Ei (x, ~) = W (x) exp (ko'0. ( 1 4 )  

Substituting Eq. (14) into Eq. (ii) and equating the amplitudes of the oscillations of the 
interphase boundary in the expressions 

V (X'B) ~,~ W (XB) exp (i~z'), ( 15 ) 
xi (x) = B exp (f~T); xl (~) = ;~i B 

we o b t a i n  t h e  p r o b l e m  f o r  t h e  s p a t i a l  p a r t  o f  t h e  o s c i l l a t i n g  c o m p o n e n t s  o f  t h e  t e m p e r a t u r e  

Its solution 

Y" (x) = ico V (x); lr" (x) = ~~o W (x), 
/7/I a~ 

~,y (~,,) = x~w %,); v (o) = o, 

~ ,~"  ~ .1  = ~ v '  ( ~ )  ,~ooq v ~ ) ,  
B 

W' (8) = Ael V ()Co), x B > x0, 
x0 

W' (6) = A~ W (Xo), x B < xo. 
Xo 

Y (X) ------- C sh ~,~lX; ~5" (X) = C )~1 sh ~.~IxB ch ~,~2 (x- -  

- [ - - -  xB) + C ~,~th ch ~txe 
~#2 ~#2 B 

• (X--XB); ~j = (1 + i)ky, C = 1K, 

(16) 

(17) 

contains unknown wave numbers k I and k=, which can be determined from the last boundary con- 
dition of Eqs. (16). Substituting Eqs. (17) into Eqs. (16) leads to the four conditions 
for the critical values of Aci of the generalized gain coefficient A: two for x B > x0 and 
two for x B < x 0. Eliminating Aci from the first pair of conditions gives 
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[l~ (oh % cos % - -  sh % sin %) + 12 (ch ~ cos ~ ,  - -  sh ~ sin ~ )  + 

-+- o)pq (ch qh sin % q- ch ~hsin ~l)/)~2B] • 

x [l, (oh % cos % q- sh % sin %) -Jr- t~ (oh tl,1 cos ~ sh ~,  sin ~1) - -  

- -  r (sh % cos % + sh r cos ~,)/;~2B] -1 = th kixo ctg lqxo, 

(Pl = (kl - -  k2) XB -j- k26; lPl ----- (kl -~" k2)XB - -  k28; 

11 = B,1(kl + k 2 ) / ~ ;  12 = B,~(k~ - - k 2 ) / ~ ,  

and  e l i m i n a t i n g  Ac2 f r o m  t h e  s e c o n d  g i v e s  

[I 1 (oh % cos % - -  sh % sin %) -b 12 (ch gh cos ~A - -  sh ~i sin ~1) + 

q- mpq (ch % sin % + ch ~1 sin ~I)/B,~B (xB) ] X 

• [11 (ch % cos % + sh % sin %) + 12 (ch ~x cos ~1 + sh ~1 sin ~1) - -  

- -  o3pq (sh % cos % q- sh ~1 cos ~I)/k2B ~B)] -1 = 

= [ l l  sh % cos 50 2 - -  12 sh  ~2 cos  ~2 - -  r (oh % cos  % - -  

- -  ch ~2 cos ~2 - -  sh % sin % q- sh ~ sin ~2)/2k=B (XB)] X 

X [ll ch % sin % - -  12 ell ~ sin ~2 - -  ~Pq (sh % sin q~ - -  

- -  sh ~2 sin ~e q- ch % cos % - -  ch ~2 cos ~2)/2~,2B (TcB)l% 

~ = (~1 - -  ~ )  x~  + k=Xo; ~2 = (k l  + ~2)x~ - -  k2Xo. 

(18) 

( 1 9 )  

For specific aj~ lj, q, and Tc, Eqs. (18) and (19) determine the spectrum of self-oscil- 
lation frequencies, i.e., the frequencies at which the phase shift of the oscillations in 
the complete feedback loop for a given x B is 2~m, m = 0, i ..... Each m corresponds to 
a certain value of the generalized gain coefficient Acjm for an inverting controller Acj TM < 

0. Since the coefficient A varies from 0 to -~ as the control parameters u 0 and K vary from 
0 to ~, the frequency is excited first that corresponds to the maximum critical value of 
A. Analysis of the analogous equation for a single-phase system shows that this takes place 

, A m§ It might be expected that this would also be valid for bi- for m = i, i.e. Acj I > -cj " 

phase systems, but a specific answer can only be obtained by calculating k I and k 2 and sub- 
stituting them into the condition for A c. In conclusion of the linear analysis, we point 
out that within the adopted assumptions, Eqs. (18) and (19) permit one to calculate the criti- 
cal parameters and the oscillation frequency. For a complete description of the temperature 
field, it is necessary to determine the amplitude of the oscillating part of the temperature 
~, which, according to the algorithm, is calculated in the fourth stage of the analysis from 
the condition of solvability of the fourth problem of the recurrence sequence. 

As was already discussed, two approaches are possible in interpreting the results: i) 
propagation of the self-oscillation method to the phase transition region; 2) analysis of 
the operating regime of the thermal control system. In the framework of the first approach, 
we indicate the main possibility for determining the complex of thermophysical character- 
istics from the results of a single experiment. Actually, one of the achievements of the 
method of self-oscillations is the fact that the measurements can be conducted in the mono- 
tonic heating regime, continuously recording the frequency of the self-oscillations. The 
frequency and the critical value of the coefficient A are determined by the equations derived 
in [i]. If the studied temperature range contains Tc, then the second phase, initially at 
the point x = 8, approaches the plane x = x 0 as T T increases. But now the frequency of the 
self-oscillations is determined by condition (18) and varies as x B decreases. It is signifi- 

cant that as XB > x0 the same parameter A I = Xi{1 - /(D $ I)/(D - 1)}/I 2 does not change, 
whereas its critical value Acl varies. After the phase boundary i s displaced into the region 

0 ~ XB ~ x0, not only the coefficient A 2 = ii{l - /[D(x B) + l)]/[D(x B) -- 1]}/I 2 vaies, but 
Ac2 as well. When x B = x 0, the critical value of the gain coefficient A experiences a dis- 
continuity: 

A ~  = ( ~ / k ~ )  &~.  ( 2 o )  

when T T = Tc, when the phase boundary is located at the plane x = 0 (end of the phase transi- 
tion), condition (19) is transformed into 
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ch kz8 cos k ~ 8 - - s h  k28 sin k28 = th koxo ctg k~xo, 
ch k~Scosk~8 + shk28sin k~6 " " (21) 

corresponding with that derived in [i], while A c takes on the same value that it had before 
the transition. The discontinuity in the critical value of the generalized gain coefficient, 
appearing in the form of a collapse or sharp rise in the oscillation amplitude, permits one 
to precisely determine the transition temperature T c. Taking the values of the thermo- 
physical characteristics obtained immediately before and after the transition for a1(Tc) , 
a2(Tc), i~(Tc),and 12(Tc), the specific latent heat of the transition can be found from Eqs. 
(18) and (19). 

Conditions (18) and (19) are more general than Eq. (21) and reduce to Eq. (21) when 
k I = k 2, q = 0 or when x B = 0, which corresponds to the beginning and the end of the phase 
transition. As a special case, from these equations follow conditions for a second order 
phase transition q = 0 and a double-layer system x B = const, q = 0. 

If the automatic control system being examined is a thermal control system, then the 
obtained results can be used to calculate its critical parameters. For example, a thermo- 
static control system with proportional control has the best characteristics when A = A c + 
E, when A somewhat exceeds the critical value. The error signal u 2 here is minimized, the 
accuracy of thermostatic control is maximized, and the system is stable. If a phase transi- 
tion takes place, then the simultaneous change of A and A c during the motion of the phase 
boundary will lead either to a decrease in sensitivity (A - A c > ~) or to loss of stability, 
in particular, to the excitation of self-oscillations (A - A c < 0), Equations (18) and (19) 
along with the conditions for A (not cited here) enable one to calculate the critical values 
of the bifurcation parameters. The controlled parameters u 0 and K should be chosen such 
that the condition A > A c is satisfied during and after the phase transition. 

As an example, we shall examine the behavior of an automatic control system with a metal- 
lic thermal feedback element near a first-order phase transition. Let the thermocouple be 
located in the center x 0 = 6/2 of a lead cylinder of length 6 = 0.i m, adiabatic conditions 
are maintained on the surface of which, while the heater and thermostat are positioned as 
shown in Fig. i. We shall make use of the thermophysical characteristics and density of 
lead cited in [6]: al = 20.1-10 -~ m2/sec, a2 = 9.9.10 -~ m2/sec, 1 I= 31.6W/(m.K), 1 2=  15.5 x 
W/(m.K), T c= 606.652K, p = 11.058 kg/m 3, q = 23.03.103 J/kg. The self-oscillation frequency 
at maximum temperature in the solid phase, calculated from the formula ~ = 2alv2/62, where 
v = 4.694105 is the root of Eq. (21), and is equal to 8.86"10 -2 sec -I, and A c = -34.6415. 
These values correspond to a value of D c = 1.001575, which when substituted into Eq. (12) 
gives the condition for the critical values of the control parameters SR/~u0K 2 = 4.98-10 -6 
The phase shift of the signal in the thermal feedback element is distributed as follows: 
approximately 3v/4, more precisely v/2 (v/2 ~ 3~/4 due to superposition of the temperature 
wave reflected from the thermostat), comes from the phase difference between the temperature 
oscillations at points x = x 0 and x = 6. The remaining ~ - v/2 is the phase difference of 
the temperature and power oscillations at the plane x = 6. Now let the phase boundary be 
located in the middle between the thermocouple and the heater at the point x = 36/4 and T T = 
606 K. Under these conditions, Eq. (18) gives ~ = 0.134 sec -I, i.e., greater than for a 
double-layer system with the same parameters. This is because an additional phase shift 
in the feedback signal takes place at the phase boundary, which corresponds to the term with 
q in Eq. (18); q plays the dominant role in this case and is missing in the analogous equa- 
tion for a double-layer system. The critical value of the generalized gain coefficient Acl 
is -6.755.10 s, an almost unallowable value, which means the absence of self-oscillations, 
at least for a given x B. This result has a simple explanation: Since the feedback signal 
from phases II to phase I is conveyed through an oscillation in the phase boundary, then 
for it to shift with the required speed, determined by the self-oscillation frequency, a 
large heat flow density is required (especially with a small gradient in the stationary tem- 
perature) and, consequently, a large gain coefficient._ If the phase boundary is located 
between the thermostat and the thermocouple such that x B = 6/4, while the stationary temper- 
ature gradient of phase I remains unchanged, then the self-oscillation frequency, satisfying 
Eq. (19), is equal to 0.343 sec -l, and the critical value of the generalized gain coeffi- 
cient Ac2 = 4.183. The range of variation of the controlled parameters, corresponding to 
the stable state of the system and determined by Eq. (13) and_the condition D > 6.01, turns 
out to be significantly narrower: SR/~u0K 2 > 1.20"10 -2 . As x B + x0, the critical values 
of Acl and Ac2 converge, but at the point x0, in correspondence with Eq. (20), A c experiences 
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a discontinuity. After the transition, A c takes on the previous value, while the frequency 
of the self-oscillations remains equal to 4.36"10 -2 sec -I. 

NOTATION 

~, angular frequency; k, wave number; ~, thermal diffusivity; TT, thermostat tempera- 
ture; Tc, transition temperature; T 0, the difference between the transition temperature and 
the thermostat temperature; T(x), the deviation of the temperature at point x from TT; x, 
coordinate; t, real time; T, normalized time; ~, thermal conductivity; p, density; u I and 
u2, voltages; P, power; S, area; q, specific heat of transition; u0, reference voltage; ~, 
thermo-electromotive force coefficient; o, Heaviside function; x0, coordinate of the thermo- 
couple; x B, coordinate of the phase boundary (stationary component); XB, the oscillating 
component of the phase boundary coordinate; e, the small deviations of the parameters from 
their critical values; K, the controller gain coefficient; ~, the dimensionless amplitude 
of the first harmonic; c n and bn, the Lyapunov coefficients; O n and En, the n-th harmonics 
of the temperatures of phases I and II, respectively; 6, thickness of the sample; Xn, the 
n-th harmonic of XB; A, the generalized gain coefficient; B, the stationary temperature 
gradient; V(x) and W(x), the spatial parts of the first harmonic of the temperatures in 
phases I and II; • ~j, ~j, s ~j, and D are auxiliary parameters. 
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GENERALIZED STEFAN PROBLEM 

A. A. Gukhman, A. A. Zaitsev, and B. P. Kamovnikov UDC 621.56/57 

A generalized Stefan problem is considered in which volume heat release during 
the freezing-out of bound moisture is taken into account. It is shown that 
the appearance of additional criteria does not prevent obtaining a self-similar 
solution. 

A whole series of problems associated with a change in the aggregate state of a materi- 
al (freezing, drying, heating, sublimation, and similar problems) can be solved in terms 
of Stefan model approximations. In accordance with this model the phase separation boundary 
moves from the periphery into the depth of an object depending on withdrawal of heat from 
its surface (or the addition of heat to it). It is assumed here that the liberation or ab- 
sorption of heating during a phase change takes place in an infinitely thin region of the 
material, namely, on a moving "front" (the phase separation boundary). 

Experimental verification of the "frontal" theory yields satisfactory results in those 
cases involving moisture found in a free state. The situation deteriorates substantially 
when it becomes necessary to take the effect of bound moisture into account. We consider 
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